Abstract

We introduce a new version of Hill’s problem that incorporates the effects of radiation of the primary and oblateness of the secondary and study the basic dynamical features of this new model-problem. This formulation is more appropriate for some astronomical applications as an approximation to the corresponding restricted three-body problem. We use iterative methods for deriving approximate expressions of the equilibrium point locations and study their stability properties by using a linear stability analysis. All equilibrium points are unstable. We also employ singular perturbations methods for obtaining approximate expressions of the Lyapunov families emanating from equilibrium points, in both coplanar and spatial case, and numerical techniques for their continuation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call