Abstract

The [Ru(bpy)3]2+ ion was encapsulated in a silica based sol–gel thin film, and the luminescence decay time constant of the photo-excited 3MLCT (metal-ligand-charge-transfer) was examined when this thin film was immersed in water, methanol, ethanol, 2-propanol, and glycerol. The luminescence decays of the films in the methanol, 2-propanol, and glycerol were better explained by a KWW model, while the luminescence decay of film immersed in water and ethanol were both well explained by a single exponential decay. Intriguingly, the dynamics of the dopants immersed in water, ethanol as well as in sol–gel bulk deviated from a single exponential fit and began to better explained by the the KWW model as temperature increased. The energy gap, ΔE(sol–gel film) and ΔE(solution), between the lowest 3MLCT state and atom localized 3 dd state for dopants under the presence of all solvents tested in this study were extracted from the temperature dependence study of the luminescence decay time constant. Generally, the ΔE(sol–gel film) values of ethanol and water were reduced from ΔE(solution), and ΔE(sol–gel film) value in all solvents matched the value of ΔE for sol–gel bulk. The effect on the dynamics in solvent over three weeks was investigated, and the films immersed in water presented the most remarkable monotonic increase in relaxation rates finally approaching the asymptotic value observed in the water solution. This phenomenon was considered to correspond to a trapping environment change due to a hydrophilic interaction through sequential intrusion of water or ethanol solvent into sol–gel pores.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.