Abstract

BackgroundThe precise form of the light response of human cone photoreceptors in vivo has not been established with certainty. To investigate the response shape we compare the predictions of a recent model of transduction in primate cone photoreceptors with measurements extracted from human cones using the paired-flash electroretinogram method. As a check, we also compare the predictions with previous single-cell measurements of ground squirrel cone responses.ResultsThe predictions of the model provide a good description of the measurements, using values of parameters within the range previously determined for primate retina. The dim-flash response peaks in about 20 ms, and flash responses at all intensities are essentially monophasic. Three time constants in the model are extremely short: the two time constants for inactivation (of visual pigment and of transducin/phosphodiesterase) are around 3 and 10 ms, and the time constant for calcium equilibration lies in the same range.ConclusionThe close correspondence between experiment and theory, using parameters previously derived for recordings from macaque retina, supports the notion that the electroretinogram approach and the modelling approach both provide an accurate estimate of the cone photoresponse in the living human eye. For reasons that remain unclear, the responses of isolated photoreceptors from the macaque retina, recorded previously using the suction pipette method, are considerably slower than found here, and display biphasic kinetics.

Highlights

  • The precise form of the light response of human cone photoreceptors in vivo has not been established with certainty

  • Measurements have been made from single cone cells isolated from the macaque retina using the suction pipette technique, and in these experiments the dim-flash time-to-peak was about 50 ms and the responses exhibited biphasic kinetics [1]

  • We show that this model for macaque cone transduction provides a good description of the cone response kinetics estimated from the human ERG, supporting the occurrence of a very rapid peak, and indicating that the flash response has monophasic kinetics

Read more

Summary

Introduction

The precise form of the light response of human cone photoreceptors in vivo has not been established with certainty. To investigate the response shape we compare the predictions of a recent model of transduction in primate cone photoreceptors with measurements extracted from human cones using the paired-flash electroretinogram method. We compare the predictions with previous single-cell measurements of ground squirrel cone responses. Measurements have been made from single cone cells isolated from the macaque retina using the suction pipette technique, and in these experiments the dim-flash time-to-peak was about 50 ms and the responses exhibited biphasic kinetics [1]. We show that this model for macaque cone transduction provides a good description of the cone response kinetics estimated from the human ERG, supporting the occurrence of a very rapid peak, and indicating that the flash response has monophasic kinetics.

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.