Abstract

Irradiation of an acetonitrile–methanol (3:1) solution of 1,4-dicyanobenzene (1), biphenyl (5), and (R)-(+)-limonene (21) leads to formation of the 1:1:1 (methanol:21:1) photo-NOCAS adducts: 4-[(1R,2S,4R)-4-isopropenyl-2-methoxy-1-methylcyclohexyl]benzonitrile (23, 30%), 4-[(1S,2R,4R)-4-isopropenyl-2-methoxy-1-methylcyclohexyl]benzonitrile (24, 2%), 4-[(1R,2R,5R)-5-isopropenyl-2-methoxy-2-methylcyclohexyl]benzonitrile (25, 3%), and 4-[(1S,2S,5R)-5-isopropenyl-2-methoxy-2-methylcyclohexyl]benzonitrile (26, 1%). When an acetonitrile solution (no added methanol) of 1,4-dicyanobenzene (1), biphenyl (5), and (R)-(+)-α-terpineol (22) was irradiated under these conditions, the products were the cyclized 1:1 (22:1) photo-NOCAS adducts: (1R,2S,5R)-2-(4-cyanophenyl)-2,6,6-trimethyl-7-oxabicyclo[3.2.1]octane (27,21%) and (1S,4R,6R)-6-(4-cyanophenyl)-1,3,3-trimethyl-2-oxabicyclo[2.2.2]octane (28, 2%). Structural assignments were based primarily upon detailed analysis of 1H and 13C nmr spectra and, for four of the products (24, 26, 27, and 28), structures were firmly established by X-ray crystallography. The mechanism for the formation of these products is discussed, with emphasis on the intramolecular reactions of the intermediate alkene radical cations. Molecular mechanics (MM3) calculations gave information regarding the structure and energy of the conformers of 21 and 22 that was useful for predicting/explaining the observed reactivity on the basis of approach vector analysis; the transition state for cyclization incorporates the nucleophile and the alkene radical cation carbon atoms at the vertices of an obtuse triangle orthogonal to the plane of the π-system. Key words: photoinduced electron transfer, radical cations, cyclization, terpenes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call