Abstract

The Fe-doped TiO2nanocomposites synthesized by a deposition-precipitation method were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), X-ray photoelectron spectroscopy (XPS), and UV-vis adsorption spectra and then were taken as a new “photosensitizer” for photodynamic therapy (PDT). The photocatalytic inactivation of Fe-doped TiO2on Leukemic HL60 cells was investigated using PDT reaction chamber based on LED light source, and the viability of HL60 cells was examined by Cell Counting Kit-8 (CCK-8) assay. The experimental results showed that the growth of leukemic HL60 cells was significantly inhibited by adding TiO2nanoparticles, and the inactivation efficiency could be effectively enhanced by the surface modification of TiO2nanoparticles with Fe doping. Furthermore, the optimized conditions were achieved at 5 wt% Fe/TiO2at a final concentration of 200 μg/mL, in which up to 82.5% PDT efficiency for the HL60 cells can be obtained under the irradiation of 403 nm light (the power density is 5 mW/cm2) within 60 minutes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.