Abstract

The extraction of titanium-bearing components in the form of CaTiO3 is an efficient utilization of blast furnace slag. The photocatalytic performance of this obtained CaTiO3 (MM-CaTiO3) as a catalyst for methylene blue (MB) degradation was evaluated in this study. The analyses indicated that the MM-CaTiO3 had a completed structure with a special length-diameter ratio. Furthermore, the oxygen vacancy was easier to generate on a MM-CaTiO3(110) plane during the photocatalytic process, contributing to improving photocatalytic activity. Compared with traditional catalysts, MM-CaTiO3 has a narrower optical band gap and visible-light responsive performance. The degradation experiments further confirmed that the photocatalytic degradation efficiency of pollutants by using MM-CaTiO3 was 3.2 times that of pristine CaTiO3 in optimized conditions. Combined with molecular simulation, the degradation mechanism clarified that acridine of MB molecular was stepwise destroyed by using MM-CaTiO3 in short times, which is different from demethylation and methylenedioxy ring degradation by using TiO2. This study provided a promising routine for using solid waste to obtain catalysts with excellent photocatalytic activity and was found to be in keeping with sustainable environmental development.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.