Abstract

The photoactivity of dissolved organic matter (DOM) has a great impact on the photodegradation of organic pollutants in natural waters. In this study, the photodegradation of TBBPA was investigated under simulated sunlight irradiation in the presence of copper ion (Cu2+), dissolved organic matter (DOM) and Cu-DOM complexation (Cu-DOM) to illustrate the effect of Cu2+ on photoactivity of DOM. The rate of photodegradation of TBBPA in the presence of Cu-DOM complex was 3.2 times higher than that in pure water. The effects of Cu2+, DOM and Cu-DOM on the photodegradation of TBBPA were highly pH dependent and hydroxyl radical(·OH) responded for the acceleration effect. Spectral and radical experiments indicated that Cu2+ had high affinity to fluorescence components of DOM, and acted as both the cation bridge and electron shuttle, resulting the aggregation of DOM and increasing of steady-state concentration of ·OH (·OHss). Simultaneously, Cu2+ also inhibited intramolecular energy transfer leading to the decrease of steady-state concentration singlet oxygen (1O2ss) and triplet of DOM (3DOM⁎ss). The interaction between Cu2+ and DOM followed the order of conjugated carbonyl CO, COO− or CO stretching in phenolic groups and carbohydrate or alcoholic CO groups. With these results, a comprehensive investigation on the photodegradation of TBBPA in the presence of Cu-DOM was conducted, and the effect of Cu2+ on the photoactivity of DOM was illustrated. These findings helped to understanding the potential mechanism of interaction among metal cation, DOM and organic pollutants in sunlit surface water, especially for the DOM-induced photodegradation of organic pollutants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.