Abstract

An incompressible sphere with a vanishing thermal expansivity suspended in a fluid can generate a photoacoustic effect when the heat deposited in the sphere by a light beam diffuses into the surrounding liquid causing it to expand and launch a sound wave. The properties of the photoacoustic effect for the sphere are found using a Green's function solution to the wave equation for pressure with Neumann boundary conditions. The results of the calculation show that the acoustic wave for fast heat liberation is an outgoing compressive pulse followed by a reflected pulse whose time profile is modified as a result of frequency dependent reflection from the sphere. For slow heat release by the sphere, the photoacoustic effect is shown to be proportional to the first time derivative of the heat flux at the particle-fluid interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call