Abstract

The p-hydroxyphenacyl group 1 is an effective photoremovable protecting group, because it undergoes an unusual photo-Favorskii rearrangement concomitant with the fast release (<1 ns) of its substrates in aqueous solution. The reaction mechanism of the diethyl phosphate derivative 1a was studied by picosecond pump−probe spectroscopy, nanosecond laser flash photolysis, and step−scan FTIR techniques. The primary photoproduct is a triplet biradical, 33, with a lifetime of about 0.6 ns. The release of diethyl phosphate determines the lifetime of the triplet state T1(1a), τ(T1) = 60 ps in wholly aqueous solution. Formation of a new photoproduct, p-hydroxybenzyl alcohol (6), was observed at moderate water concentrations in acetonitrile. It is formed by CO elimination from the elusive spirodione intermediate (4), followed by hydration of the resulting p-quinone methide (5). Computational studies show that CO elimination from the spirodione is a very facile process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.