Abstract

The new hybrid graphyne-like materials with highly developed specific surface area and excellent greenhouse gas adsorption properties have been described. Inorganic P3N3Cl6 was selected as a building block and 1,4-diacetylene benzene was chosen as a linker for these materials. The chemical structure of P3N3Cl6 allows for creation of three-dimensional materials with the BET surface area ranging from 600 to 1000 m2 g−1 and a pore volume as high as 0.3 cm3 g−1. The obtained materials showed microporous structure and distinctive greenhouse gas adsorption properties. For those materials, CO2 adsorption reached as high as 1.5 mmol g−1, while for N2O ranged from 1.5 to 1.7 mmol g−1, and for CH4 was 0.4 mmol g−1 when adsorption was carried out at 100 kPa and 300 K. Moreover, obtained by the modified Dubinin adsorption model, the maximum adsorption values were 2.5–11 mmol g−1 depending on the type of materials used. This finding suggests that new materials are promising high-pressure adsorbents of greenhouse gases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.