Abstract

Oral streptococci are sugar-fermentative bacteria comprising at least 19 distinct species and are a significant proportion of the normal microbial population of the mouth and upper respiratory tract of humans. These streptococci transport several sugars by the phosphoenolpyruvate:sugar phosphotransferase system (PTS) which concomitantly catalyzes the phosphorylation and translocation of mono- and disaccharides via a chain of enzymic reactions that transfer a phosphate group from phosphoenolpyruvate to the incoming sugar. A number of PTS components, including HPr, Enzyme I and some Enzymes II, have been studied at the biochemical and/or genetical level in Streptococcus salivarius, Streptococcus mutans and Streptococcus sobrinus. Moreover, compelling evidence indicates that the oral streptococcal PTS is involved in the regulation of sugar metabolism. Results are accumulating suggesting that a protein called IIAB Man, as well as the phosphocarrier protein HPr, are key regulatory components that allow these bacteria to select rapidly metabolizable sugars, such as glucose or fructose, over less readily utilizable carbohydrates. Circumstantial evidence suggests that the molecular mechanisms by which oral streptococcal PTS exert their regulatory functions differ from mechanisms in other Gram-negative or Gram-positive bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.