Abstract

Energy coupling to fructose transport in Rhodopseudomonas sphaeroides is achieved by phosphorylation of the membrane-spanning fructose-specific carrier protein, EFruII. The phosphoryl group of phosphoenolpyruvate is transferred to EFruII via the cytoplasmic component SF (soluble factor). The standard free enthalpy of hydrolysis of the two phosphorylated proteins has been estimated from isotope exchange measurements in chemical equilibrium. The delta G degrees for SF-P is -60.5 kJ/mol. The standard free enthalpy for hydrolysis of EII-P is -37.9 kJ/mol, but -45.2 kJ/mol when SF is still complexed to it, as in the overall reaction. Therefore the standard free enthalpy of hydrolysis of SF X EII-P is 70% of the standard free enthalpy of hydrolysis of P-enolpyruvate. The measurements reveal two regulation sites in the system. First, the phosphorylation of SF is inhibited by pyruvate when the concentration ratio of pyruvate/P-enolpyruvate becomes too high. Second, a low concentration of internal fructose prevents the phosphorylation of the carrier by the internal fructose-1-P pool when the concentration of the latter becomes too high or the phosphorylation rate by P-enolpyruvate too slow. Furthermore comparison of the isotope exchange and the overall phosphotransferase reaction kinetics leads to the conclusion that binding of fructose to the carrier is a slow step relative to the phosphoryl group transfer from EFruII to fructose.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call