Abstract

Background/AimsSince the degeneration of the nigrostriatal dopaminergic pathway in Parkinson’s disease (PD) is associated with the inflammation process and decreased levels of cyclic nucleotides, inhibition of up-regulated cyclic nucleotide phosphodiesterases (PDEs) appears to be a promising therapeutic strategy. We used ibudilast (IBD), a non-selective PDE3,4,10,11 inhibitor, due to the abundant PDE 4 and 10 expression in the striatum. The present study for the first time examined the efficacy of IBD in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) mouse model of PD.MethodsIBD [0, 20, 30, 40, or 50 mg/kg] was injected b.i.d. subcutaneously for nine days to three-month-old male C57Bl/10Tar mice, beginning two days prior to MPTP (60 mg/kg) intoxication. High-pressure liquid chromatography, Western blot analysis, and real time RT-PCR methods were applied.ResultsOur study demonstrated that chronic administration of IBD attenuated astroglial reactivity and increased glial cell-derived neurotrophic factor (GDNF) production in the striatum. Moreover, IBD reduced TNF-α, IL-6, and IL-1β expression.ConclusionIBD had a well-defined effect on astroglial activation in the mouse model of PD; however, there was no protective effect in the acute phase of injury. Diminished inflammation and an increased level of GDNF may provide a better outcome in the later stages of neurodegeneration.

Highlights

  • Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting about 2% of the population over 65 years of age [1]

  • Our study demonstrated that chronic administration of IBD attenuated astroglial reactivity and increased glial cell-derived neurotrophic factor (GDNF) production in the striatum

  • Experimental and clinical studies have demonstrated that the cyclic nucleotide phosphodiesterase (PDE) inhibitors may be useful in treating neuroinflammatory disorders

Read more

Summary

Introduction

Parkinson’s disease (PD) is the second most common neurodegenerative disorder, affecting about 2% of the population over 65 years of age [1]. The currently available treatments improve some symptoms of the disease; they have sub-optimal efficacy that is related to the duration of the disease. A neuroprotective or disease modifying treatment is still needed [2, 3]. Since chronic neuroinflammation is associated with the pathogenesis of PD, the neuroinflammatory signaling pathways in the central nervous system (CNS) are of interest as potential pharmacotherapy targets [4]. Several candidate drugs directed at these targets have reached clinical trials but, none were effective. Experimental and clinical studies have demonstrated that the cyclic nucleotide phosphodiesterase (PDE) inhibitors may be useful in treating neuroinflammatory disorders

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.