Abstract

Knowledge of lattice anharmonicity is essential to elucidate distinctive thermal properties in crystalline solids. Yet, accurate ab initio investigations of lattice anharmonicity encounter difficulties owing to the cumbersome computations. Here we introduce the phonon quasiparticle approach and review its application to various materials. This method efficiently and reliably addresses lattice anharmonicity by combining ab initio molecular dynamics and lattice dynamics calculations. Thus, in principle, it accounts for full anharmonic effects and overcomes finite-size effects typical of ab initio molecular dynamics. The validity and effectiveness of the current approach are demonstrated in the computation of thermodynamic and heat transport properties of weakly and strongly anharmonic systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.