Abstract

The restricted diffusive pair contact process 2 A → 3 A , 2 A → ∅ (PCPD) and the classification of its critical behavior continues to be a challenging open problem of non-equilibrium statistical mechanics. Recently, Kockelkoren and Chaté [Absorbing phase transition of branching-annihilating random walks, Phys. Rev. Lett. 90 (2003) 125701] suggested that the PCPD in one spatial dimension represents a genuine universality class of non-equilibrium phase transitions which differs from previously known classes. To this end they introduced an efficient lattice model in which the number of particles per site is unrestricted. In numerical simulations this model displayed clean power laws, indicating ordinary critical behavior associated with certain non-trivial critical exponents. In the present work, however, we arrive at a different conclusion. Increasing the numerical effort, we find a slow drift of the effective exponents which is of the same type as observed in previously studied fermionic realizations. Analyzing this drift we discuss the possibility that the asymptotic critical behavior of the PCPD may be governed by an ordinary directed percolation fixed point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.