Abstract
The microstructure evolution of a low-carbon 13Cr4Ni martensitic stainless steel during two-stage intercritical tempering at 630 °C and 590 °C has been investigated by X-ray diffraction, thermodilatometry, and transmission electron microscopy. It was found that the amount and size of reversed austenite increase remarkably after second-stage tempering at 590 °C. However, there is no remarkable variation in the chemical composition and nucleation site of the reversed austenite during the first- and second-stage tempering. The dynamics of the phase transformation and elements distribution imply that the martensite-to-austenite phase transformation during second-stage tempering is controlled by diffusion. The unstable austenite transformation into martensite during the cooling process of the first-stage tempering induces high density dislocations and inhomogeneous element distribution, which facilitate the nucleation and growth of the reversed austenite in the second-stage intercritical tempering. Additionally, some lathy reversed austenite spheroidizes to granular during second-stage tempering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.