Abstract
This paper presents very promising radio frequency (RF) fingerprinting techniques for the terminal-based detection of fake base station (FBS) in a wireless cellular network. The proposed schemes are based on identifying the analog hardware impairments of the transmitter. In this regard, phase noise analysis and its measured signatures reveal that low to medium end software defined radio (SDR) acting as FBS can certainly be detected if the detecting terminal’s own phase noise is at least 10-dB better than the transmitter. However, for medium to high end FBS, a computationally efficient network synchronized carrier frequency offset (CFO) approach has been proposed and the measurement results confirm that the regular base stations (RBS) that are clock synchronized show identical CFO values whereas, the FBS show large and random offset values. Furthermore, the CFO stability (Frequency offset vs. time) signatures illustrate that an FBS running by its own lazy clock show a large instability in the frequency offset values and even in case of a precision clock, fluctuations vanish though the stabilized offset is still large enough for a user terminal to distinguish the FBS from the RBS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.