Abstract
The space–time evolution of the electrostatic normal modes (namely, the cyclotron and upper hybrid modes) of a warm pair-ion plasma is studied in the presence of a constant magnetic field. By introducing a phase lag between the density perturbations of positive and negative ions, the nonlinear interaction between these two electrostatic modes is shown. A nonlinear analysis of the basic fluid Maxwell equations based on a perturbative approach shows that excited upper hybrid waves can phase mix away and consequently break at arbitrarily low amplitudes. The phase mixing time is found to increase as the strength of the external magnetic field is enhanced. The results of our investigation are believed to be applicable to laboratory-produced electron–positron and paired fullerene-ion plasmas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.