Abstract

Using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions, the magnetic properties of the diluted Ising superlattice consisting of two ferromagnetic materials A and B, with L a layers of diluted spins S a= 1 2 and L b layers of diluted spins S b=1 with antiferromagnetic interface coupling are examined. For fixed values of the reduced exchange interactions and the concentration c of magnetic atoms, the phase diagrams, the two sublattice magnetizations and the total magnetization for the superlattice with the same spin S a=S b= 1 2 and for S a= 1 2 , S b =1 are studied as a function of the temperature. We find a number of characteristic phenomena. In particular, the effect of the concentration c of magnetic atoms, the interlayer coupling and the layer thickness on both the compensation temperature and the magnetization profiles are clarified.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.