Abstract

In this work, the coupling phase change heat transfer process and thermal stress behavior of biological tissue during cryosurgery are studied in the context of a generalized thermoelastic theory. The nonlinear governing equations are constructed while considering the variable thermal properties and solved by a time-domain finite element method based on the effective heat capacity formulation. A 2-D tumor and normal tissue model is adopted for simulating the freezing process in cryosurgery. The effects of temperature-dependent thermal properties and relaxation time on the responses of biological tissue are discussed and illustrated graphically.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call