Abstract

The diuretic ethacrynic acid (EA) has been shown to inhibit signaling by the proinflammatory transcription factor nuclear factor-kappaB (NF-kappaB). Accordingly, we sought to determine whether this compound is capable of inhibiting the release of cytokines [interleukin (IL)-6 and IL-10] and NO from RAW 264.7 murine macrophage-like cells stimulated with lipopolysaccharide (LPS). Additionally, we sought to determine whether EA can inhibit secretion of high-mobility group box 1 (HMGB1), a nuclear protein that is secreted by immunostimulated macrophages and functions in the extracellular milieu as a proinflammatory mediator. In a concentration-dependent manner, EA inhibited secretion of IL-6, IL-10, nitric oxide, and HMGB1. As expected, EA inhibited NF-kappaB DNA binding in LPS-stimulated RAW 264.7 cells. Treating these cells with pyrrolidine dithiocarbamate, SN50 (amino acid sequence AAVALLPAVLLALLAPVQRKRQKLMP) or 5-(thien-3-yl)-3-aminothiophene-2-carboxamide (SC-514) also inhibited LPS-induced NF-kappaB DNA binding, but these compounds failed to inhibit LPS-induced HMGB1 secretion. These findings suggested that inhibition of HMGB1 secretion by EA might occur via a mechanism unrelated to the NF-kappaB signaling pathway. Because EA is an electrophilic compound that is known to be capable of inducing expression of so-called phase 2 proteins, we sought to determine whether two other phase 2 enzyme inducers, oltipraz and DL-sulforaphane, also are capable of inhibiting HMGB1 release from immunostimulated macrophages. Incubating RAW 264.7 cells with either oltipraz or DL-sulforaphane inhibited LPS-induced HMGB1 secretion. Moreover, both EA and DL-sulforaphane inhibited relocalization of nuclear HMGB1 into the cytoplasm of LPS-stimulated RAW 264.7 cells. These data suggest that phase 2 inducers may exert anti-inflammatory effects by inhibiting secretion of the cytokine-like nuclear protein HMGB1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.