Abstract

ATP-dependent proteases, like FtsH (HflB), recognize specific protein substrates. One of these is the lambda CII protein, which plays a key role in the phage lysis-lysogeny decision. Here we provide evidence that the conserved C-terminal end of CII acts as a necessary and sufficient cis-acting target for rapid proteolysis. Deletions of this conserved tag, or a mutation that confers two aspartic residues at its C terminus do not affect the structure or activity of CII. However, the mutations abrogate CII degradation by FtsH. We have established an in vitro assay for the lambda CIII protein and demonstrated that CIII directly inhibits proteolysis by FtsH to protect CII and CII mutants from degradation. Phage lambda carrying mutations in the C terminus of CII show increased frequency of lysogenization, which indicates that this segment of CII may itself be sensitive to regulation that affects the lysis-lysogeny development. In addition, the region coding for the C-terminal end of CII overlaps with a gene that encodes a small antisense RNA called OOP. We show that deletion of the end of the cII gene can prevent OOP RNA, supplied in trans, interfering with CII activity. These findings provide an example of a gene that carries a region that modulates stability at the level of mRNA and protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.