Abstract
AbstractAmyloid fibrillation kinetics of proteins associated with neurodegenerative diseases has been extensively studied using Raman spectroscopy. The normalization factor for the spectra is crucial for obtaining correct kinetics of Raman indicators, especially vibrational band intensities. Here, we compared the concentration dependences between the absorption at 280 nm in UV–vis spectroscopy and the phenylalanine (Phe) Raman band intensity at 1003 cm−1 in amyloid fibrillation kinetics of lysozyme. The former exhibits better performance as normalization factor. Using this new normalization factor, the effect of pH value on the transformation of hen egg‐white lysozyme (HEWL) tertiary and secondary structures was studied subsequently. With increasing acidity, the unfolding of tertiary structures and the transformation of secondary structures are significantly accelerated. Notably, the populations of various secondary structures in the final state remain in the pH < 2.0 solutions, indicating that the branching ratios of “on‐pathway” to amyloid fibrils and “off‐pathway” to gel‐like aggregates are independent on the pH value in the range of 1.1–1.9.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.