Abstract

The P2 protein is a small, extrinsic protein of the myelin membrane in the peripheral nervous system that structurally belongs to the fatty acid binding proteins (FABPs) family, sharing with them a 10 strands β-barrel structure. FABPs appear to be involved in cellular fatty acid transport, but very little is known about the role of P2 in the metabolism of peripheral myelin lipids. Study of protein conformation at different pHs is a useful tool for the characterization of the unfolding mechanisms and the intrinsic conformational properties of the protein, and may give insight into factors that guide protein folding pathways. In particular, low pH conditions have been shown to induce partially folded states in several proteins. In this paper, the acidic unfolding of purified P2 protein was studied with both spectroscopic techniques and molecular dynamics simulation. Both experimental and computational results indicate the presence of a partly folded state at low pH, which shows structural changes mainly involving the lid that is formed by the helix-turn-helix domain. The opening of the lid, together with a barrel relaxation, could regulate the ligand exchanges near the cell membrane, supporting the hypothesis that the P2 protein may transport fatty acids between Schwann cells and peripheral myelin.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.