Abstract
The chemical modification of lysozyme (I) has been accomplished with alpha, alpha'-dibromo-p-xylenesulfonic acid (DBX) at five different pH values. I was alkylated by DBX at room temperature (28 degrees C) with decrease in enzyme activity. The rate of inactivation depended upon the pH at which alkylation was carried out. The highest rate was seen at alkaline pH values; the lowest at more acidic pH values. Amino acid analyses showed that-two lysines and two tryptophan residues had been modified at pH 9; two lysines, one tryptophan and one methionine had reacted at pH 8. A histidine residue was bound at pH 6.5 together with a tryptophan residue. At the lower pH values (2.7, 4.5, 6.5), alkylation occurred with a single tryptophan residue each. Fluorescence and CD data both ruled out the participation of tryptophans 62 or 108. Labeling experiments showed that two residues of DBX-35S were bound per molecule of I at both pH9 and pH8; one residue of DBX was bound per molecule of I at the other pH values. Sedimentation coefficients were characteristic of native lysozyme. The stoichiometry of binding and residue modification indicated that intra-molecular cross links were established. The pH dependence of the cross-linking provides means to measure several allowed intra-molecular distances. The results presented here are consistent with the existence of side chain motion in lysozyme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: International journal of peptide and protein research
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.