Abstract
If a microorganism has a growth coupled production or consumption of acid or alkali, it is possible to use the pH-auxostat as a means of control in continuous fermentation. In using the pH-auxostat, it is possible to separate the inlet substrate flow in two different streams. These will both be pH controlled, with one main flow, consisting of nutrients and a second minor but concentrated flow, of acid or alkali. Hereby, it is possible to vary the difference in pH between the fermentor and the inlet medium. This pH difference is proportional to the steady-state cell mass concentration.(1,2) It is shown that by separating the inlet flow in two different streams and cultivating without any substrate limitation, the maximum growth rate may be obtained while the cell mass concentration will be controlled. This will also give the possibility to reach high cell mass concentrations at micro(max) without the risk of wash-out. A modified expression, based on hydrogen, of the steady-state bio-mass concentration, X, is developed as X = Y(X/H x [FHin/(FHin +FMin)] x (CHin -CHFerm) where Y(X/H) is the yield coefficient of cell mass per acid produced. The indexes Hin and Min refer to the inflows of alkali and medium, respectively; C(Hin) is the inlet concentration of hydrogen ions. The boundary condition for the cell mass shows that S(in) > X/Y(X/S), where S(in) is the medium substrate concentration and Y(X/S) is the yield of biomass per consumed substrate. It is shown that when the cell mass concentration exceeds this value, the flow stops. The applicability of the pH-auxostat method is then verified from different experiments. It is hereby used to detect a deviation from the maximal growth rate showing effects on the microbial physiology. With Escherichia coli used as the model organism, the effect on the growth rate of temperature and high concentration of ammonia were investigated.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.