Abstract

We analyze the holomorphic Pfaffian line bundle defined over an infinite dimensional isotropic Grassmannian manifold. Using the infinite dimensional relative Pfaffian, we produce a Fock space structure on the space of holomorphic sections of the dual of this bundle. On this Fock space, an explicit and rigorous construction of the spin representations of the loop groupsLOn is given. We also discuss and prove some facts about the connection between the Pfaffian line bundle over the Grassmannian and the Pfaffian line bundle of a Dirac operator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.