Abstract

Potholes represent areas where the normally planar PGE-rich Merensky Reef of the upper Critical Zone of the Bushveld Complex transgresses its footwall, such geometric relationships being unusual in layered intrusions. The recognition of vertical dykes of Merensky pyroxenite in the footwall suggests downward collapse of crystal mush into pull-apart sites resulting from tensional deformation due to the loading effects of major new magma additions. In contrast, crosscutting anorthosite veins display physical and isotopic evidence of upward emplacement. The Merensky Reef and its footwall have distinct initial Sr-isotope ratios (R 0 > 0.7066 and <0.7066, respectively), which may be used to constrain these processes related to pothole formation. Merensky Reef in potholes (R 0 = 0.7069−0.7078) shows no isotopic evidence of assimilation of, or reaction with, footwall material. Discrete, discordant replacement bodies of anorthosite extend from the footwall lithologies to cross-cut the Merensky Reef and its hanging wall. The initial Sr-isotope ratio in these replaced rocks is totally reset to footwall values (R 0 = 0.7066), and immediately adjacent stratiform lithologies are slightly modified towards footwall values. In contrast, Neptunian pyroxenitic (Merensky) dykes cross-cutting the footwall lithologies, with a large surface area to volume ratio, and low Sr content, do not display footwall-like Sr-isotope initial-ratios (R 0 = 0.7077), and thus show no evidence for assimilation of or reaction with footwall material. Furthermore, pegmatoidal replacement pyroxenite (“replacement pegmatoid”), at the base of the Merensky Reef within potholes, has a high initial-ratio (R 0 > 0.7071), and so models of pervasive metasomatism by footwall material are not applicable. This isotopic evidence indicates that there was no active interaction of footwall material with the overlying magma during, or after, the formation of Merensky Reef potholes, a basic tenet of existing pothole formation hypotheses involving footwall mass-transfer. In contrast, the isotopic data are entirely consistent with an extensional model for pothole formation, with the more radiogenic Merensky magma migrating laterally to fill extensional zones in the footwall layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.