Abstract

The absolute value of the coefficient of q in the chromatic polynomial of a graph G is known as the chromatic discriminant of G and is denoted α(G). There is a well known recurrence formula for α(G) that comes from the deletion-contraction rule for the chromatic polynomial. In this paper we prove another recurrence formula for α(G) that comes from the theory of Kac- Moody Lie algebras. We start with a brief survey on many interesting algebraic and combinatorial interpretations of α(G). We use two of these interpretations (in terms of acyclic orientations and spanning trees) to give two bijective proofs for our recurrence formula of α(G).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.