Abstract
The molecular mechanism(s) mediating long-term adverse effects of dichlorvos, a widely used insecticide, are still unclear. Our work uncovered a new cellular effect of dichlorvos in cultured human cells, i.e. its capacity to induce extremely aberrant mitotic spindles with monopolar microtubule arrays that were associated with hypercondensed chromosomes and pyknotic chromatin masses. Monopolar spindles produced by dichlorvos treatment were characterized by the delocalization of the depolymerizing kinesin Kif2a from spindle poles. Dichlorvos-induced spindle monopolarity could be reversed by promoting microtubule stabilization through chemical treatment or by inhibiting the depolymerizing function of the kinesin MCAK at kinetochores. These findings demonstrate that dichlorvos inhibits the depolymerizing activity of Kif2a at centrosomes and thereby disrupts the balance of opposing centrosomal and kinetochore forces controlling spindle bipolarity during prometaphase. Dichlorvos-induced defects in spindle bipolarity may be responsible for the previously reported induction of aneuploidy by this chemical. Collectively, these results indicate that environmental chemicals, such as dichlorvos, may promote chromosome instability by interfering with the cell division machinery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.