Abstract
Liquid-liquid extraction is an essential chemical separation technique where polar solutes are extracted from an aqueous phase into a nonpolar organic solvent by amphiphilic extractant molecules. A fundamental limitation to the efficiency of this important technology is third phase formation, wherein the organic phase splits upon sufficient loading of polar solutes. The nanoscale drivers of phase splitting are challenging to understand in the complex hierarchically structured organic phases. In this study, we demonstrate that the organic phase structure and phase behavior are fundamentally connected in a way than can be understood with critical phenomena theory. For a series of binary mixtures of trialkyl phosphate extractants with linear alkane diluents, we combine small angle x-ray scattering and molecular dynamics simulations to demonstrate how the organic phase mesostructure over a wide range of compositions is dominated by critical concentration fluctuations associated with the critical point of the third phase formation phase transition. These findings reconcile many longstanding inconsistencies in the literature where small angle scattering features, also consistent with such critical fluctuations, were interpreted as reverse micellar-like particles. Overall, this study shows how the organic phase mesostructure and phase behavior are intrinsically linked, deepening our understanding of both and providing a new framework for using molecular structure and thermodynamic variables to control mesostructure and phase behavior in liquid-liquid extraction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.