Abstract

The relation between loop quantum gravity and Regge calculus has been pointed out many times in the literature. In particular the large spin asymptotics of the Barrett–Crane vertex amplitude is known to be related to the Regge action. In this paper we study a semiclassical regime of loop quantum gravity and show that it admits an effective description in terms of perturbative area-Regge-calculus. The regime of interest is identified by a class of states given by superpositions of four-valent spin networks, peaked on large spins. As a probe of the dynamics in this regime, we compute explicitly two- and three-area correlation functions at the vertex amplitude level. We find that they match with the ones computed perturbatively in area-Regge-calculus with a single 4-simplex, once a specific perturbative action and measure have been chosen in the Regge-calculus path integral. Correlations of other geometric operators and the existence of this regime for other models for the dynamics are briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.