Abstract

The aim of this study is to construct a bottom-up model of cortical dynamics that is capable of describing the same types of neural phenomena as top-down continuum models, namely the power spectrum, frequency response to perturbation and EEG time-series. The key difference between the two approaches is that the bottom-up approach preserves more of the intrinsic physiological details than the top-down models [1]. A stochastic Fokker-Planck modelling approach is used to describe a network of leak integrate-and-fire (IF) neurons with temporally inhomogeneous inputs. Previous work either calculated the response of a single neuron with conductance-based synapses, or the network with current-based synapses [2]. In this study we use and extend a recently published Fokker-Planck approach [3] within an analytical framework to calculate the dynamical firing-rate of a network with conductance-based synapses receiving temporally inhomogeneous synaptic input. In particular, the network has fully recurrent connectivity with both the steady-state and the dynamic perturbation response of the background activity fed back into the inputs. This is done in a self-consistent formalism [4] for a network of excitatory and inhibitory neurons. The Fokker-Planck formalism enables the calculation of the linear response of the firing-rate to perturbation with recurrent connections. The power spectrum and EEG time-series of the network are calculated by treating the synaptic inputs as an inhomogeneous Poisson process. From this we determine the auto-correlation function, which is identified as a cyclo-stationary process. The signal is then phase-averaged over its period and the Wiener-Khinchin theorem is used to determine the power spectrum from the autocorrelation function. The power spectrum is convolved with a filter to approximate the local field potential propagation through the extra-cellular fluid [5]. The analytical results of the frequency response of the dynamical firing rate and its power spectra are compared with numerical simulation results for a recurrently connected network with conductance-based synapses and temporally inhomogeneous inputs. Results are obtained using parameter values that represent typical cortical in vivo neurons [4]. This work is the first stage necessary for constructing a physiologically plausible mathematical model of a mesoscopic network of cortical columns.

Highlights

  • The aim of this study is to construct a bottom-up model of cortical dynamics that is capable of describing the same types of neural phenomena as top-down continuum models, namely the power spectrum, frequency response to perturbation and EEG time-series

  • The Fokker-Planck formalism enables the calculation of the linear response of the firing-rate to perturbation with recurrent connections

  • The power spectrum and EEG time-series of the network are calculated by treating the synaptic inputs as an inhomogeneous Poisson process

Read more

Summary

Introduction

The aim of this study is to construct a bottom-up model of cortical dynamics that is capable of describing the same types of neural phenomena as top-down continuum models, namely the power spectrum, frequency response to perturbation and EEG time-series. The Fokker-Planck formalism enables the calculation of the linear response of the firing-rate to perturbation with recurrent connections.

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call