Abstract

We consider a linear version of the zero Mach-number limit of the Euler equations of compressible fluid flow. This system turns out to be a coupled hyperbolic/parabolic equation with coupled, time-dependent boundary conditions. Using the theory of abstract differential-algebraic equations it is shown that the frozen coefficient system has ADAE index 1. Moreover, the much stronger result is proven that the system has time-perturbation index one and space-perturbation index two even in the case of time-dependent boundary conditions. The results are stated in terms of the original physical variables. The estimates agree well with numerical experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call