Abstract

Starting from bioethanol it is possible, by using an appropriate catalyst, to produce ethyl acetate in a single reaction step and pure hydrogen as a by-product. Two molecules of hydrogen can be obtained for each molecule of ethyl acetate produced. The mentioned reaction is reversible, therefore, it is possible to hydrogenate ethyl acetate to reobtain ethanol, so closing the chemical cycle of a Liquid Organic Hydrogen Carrier (LOHC) process. In other words, bioethanol can be conveniently used as a hydrogen carrier. Many papers have been published in the literature dealing with both the ethanol dehydrogenation and the ethyl acetate hydrogenation to ethanol so demonstrating the feasibility of this process. In this review all the aspects of the entire LOHC cycle are considered and discussed. We examined in particular: the most convenient catalysts for the two main reactions, the best operative conditions, the kinetics of all the reactions involved in the process, the scaling up of both ethanol dehydrogenation and ethyl acetate hydrogenation from the laboratory to industrial plant, the techno-economic aspects of the process and the perspective for improvements. In particular, the use of bioethanol in a LOHC process has three main advantages: (1) the hydrogen carrier is a renewable resource; (2) ethanol and ethyl acetate are both green products benign for both the environment and human safety; (3) the processes of hydrogenation and dehydrogenation occur in relatively mild operative conditions of temperature and pressure and with high energetic efficiency. The main disadvantage with respect to other more conventional LOHC systems is the relatively low hydrogen storage density.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call