Abstract

The Persistent Cold-Air Pool Study (PCAPS) was conducted in Utah's Salt Lake valley from 1 December 2010 to 7 February 2011. The field campaign's primary goal was to improve understanding of the physical processes governing the evolution of multiday cold-air pools (CAPs) that are common in mountain basins during the winter. Meteorological instrumentation deployed throughout the Salt Lake valley provided observations of the processes contributing to the formation, maintenance, and destruction of 10 persistent CAP episodes. The close proximity of PCAPS field sites to residences and the University of Utah campus allowed many undergraduate and graduate students to participate in the study. Ongoing research, supported by the National Science Foundation, is using the PCAPS dataset to examine CAP evolution. Preliminary analyses reveal that variations in CAP thermodynamic structure are attributable to a multitude of physical processes affecting local static stability: for example, synoptic-scale processes impact changes in temperatures and cloudiness aloft while variations in boundary layer forcing modulate the lower levels of CAPs. During episodes of strong winds, complex interactions between the synoptic and mesoscale f lows, local thermodynamic structure, and terrain lead to both partial and complete removal of CAPs. In addition, the strength and duration of CAP events affect the local concentrations of pollutants such as PM2.5.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.