Abstract
The Golgi complexes of animal cells are said to become vesicular during cell division in order to allow the equal partitioning of organelles between daughter cells (Warren, 1985). However, in the epidermis of fifth stage larval Calpodes ethlius (Lepidoptera, Hesperi idae), cutical deposition is concurrent with cell division in preparation for pupation. We therefore looked at the Golgi complexes of these epidermal cells to see if they maintained their interphase form to allow them to continue to function during cell division. Dividing cells were recognized by changes in the nucleus and nuclear envelope, the form of the cell cortex and cell surface, and by the disposition of microtubules. Epidermal Golgi complexes consist of 3–5 cisternae capped by endoplasmic reticulum with transfer vesicles and rings of GC beads next to the cis face, and secretory vesicles on the trans face. Golgi complexes of dividing cells are structurally indistinguishable from those in interphase, their beads are in the rings characteristic of active GCs, and cuticle continues in uninterrupted lamellae above the apical microvilli. The observations suggest that Golgi complexes in dividing insect cells differ from those of most vertebrates by remaining functional through mitosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.