Abstract

Given a continuous function on the boundary of a bounded open set in $$\mathbb {R}^d$$ there exists a unique bounded harmonic function, called the Perron solution, taking the prescribed boundary values at least at all regular points (in the sense of Wiener) of the boundary. We extend this result to vector-valued functions and consider several methods of constructing the Perron solution which are classical in the real-valued case. Special emphasis is on the case where the codomain is a Banach lattice. In this case we investigate Perron’s classical construction via sub- and supersolutions. We also apply our results to solve elliptic and parabolic boundary value problems of vector-valued functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.