Abstract

The Perpetual Diamond produces motion continuously and unambiguously in one direction despite never physically changing location. The phenomenon consists of a steady, mid-luminance diamond bordered by four thin edge strips and a surrounding background field. The direction of motion is determined by the relative phases of the luminance modulation between the edge strips and the background. Because the motion is generated entirely by changing contrast signals between the edge strips and background, the stimulus is a valuable tool for tests of spatial contrast, temporal contrast, contrast gain, and color contrast. We demonstrate that observers see motion even when the edge strips subtend only seconds of arc on the retina (which is less than the frequently reported 10 minutes of arc) and that perceived motion is due entirely to changes in the difference in contrast phase modulation, independent from the luminance phase.

Highlights

  • The Perpetual Diamond produces motion continuously and unambiguously in one direction despite never physically changing location

  • It is well known that displays that contain shifts in contrast at edges can create the perception of motion (Anstis & Rogers, 1986; Gregory & Heard, 1983; Hock & Gilroy, 2005; Mather, 2006; Shapiro, Charles, & Shear-Heyman, 2005; Shapiro & Knight, 2008)

  • If we divide the background into four separate rectangles, each bordering one edge strip, we can modulate each out of phase with the others, and the diamond motion is preserved as long as each edge remains in quadrature phase with its respective background

Read more

Summary

Introduction

The Perpetual Diamond produces motion continuously and unambiguously in one direction despite never physically changing location. It is well known that displays that contain shifts in contrast at edges can create the perception of motion (Anstis & Rogers, 1986; Gregory & Heard, 1983; Hock & Gilroy, 2005; Mather, 2006; Shapiro, Charles, & Shear-Heyman, 2005; Shapiro & Knight, 2008). The luminance of edges and background modulate in time.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call