Abstract

BackgroundThe plant peroxisomal multifunctional protein (MFP) possesses up to four enzymatic activities that are involved in catalyzing different reactions of fatty acid β-oxidation in the peroxisome matrix. In addition to these peroxisomal activities, in vitro assays revealed that rice MFP possesses microtubule- and RNA-binding activities suggesting that this protein also has important functions in the cytosol.ResultsWe demonstrate that MFP is an authentic microtubule-binding protein, as it localized to the cortical microtubule array in vivo, in addition to its expected targeting to the peroxisome matrix. MFP does not, however, interact with the three mitotic microtubule arrays. Microtubule co-sedimentation assays of truncated versions of MFP revealed that multiple microtubule-binding domains are present on the MFP polypeptide. This indicates that these regions function together to achieve high-affinity binding of the full-length protein. Real-time imaging of a transiently expressed green fluorescent protein-MFP chimera in living plant cells illustrated that a dynamic, spatial interaction exits between peroxisomes and cortical microtubules as peroxisomes move along actin filaments or oscillate at fixed locations.ConclusionPlant MFP is associated with the cortical microtubule array, in addition to its expected localization in the peroxisome. This observation, coupled with apparent interactions that frequently occur between microtubules and peroxisomes in the cell cortex, supports the hypothesis that MFP is concentrated on microtubules in order to facilitate the regulated import of MFP into peroxisomes.

Highlights

  • The plant peroxisomal multifunctional protein (MFP) possesses up to four enzymatic activities that are involved in catalyzing different reactions of fatty acid β-oxidation in the peroxisome matrix

  • MFP localizes to both peroxisomes and cortical MTs in onion epidermal cells To begin to examine the putative interaction between MFP and MTs in plant cells, an expression construct encoding GFP fused to the amino terminus of MFP (GFPMFP) was introduced into onion epidermal cells by particle bombardment

  • Cells expressing the fusion protein displayed a fluorescence pattern that included numerous, small punctate structures (Figure 1A) that were presumed to be peroxisomes. These were similar in appearance to the punctate structures observed in cells expressing a peroxisomal marker protein consisting of GFP appended to a carboxyl-terminal PTS1 ([23], GFP-Since the carboxylterminal PTS1 tripeptide (SRM), Figure 1B)

Read more

Summary

Introduction

The plant peroxisomal multifunctional protein (MFP) possesses up to four enzymatic activities that are involved in catalyzing different reactions of fatty acid β-oxidation in the peroxisome matrix. The cognate receptor for PTS1-bearing proteins, peroxin 5 (Pex5p), is proposed to carry its protein cargo into the peroxisome matrix as it cycles between the cytosol and the matrix. It may release its cargo after docking with the import machinery located on the peroxisomal surface [6]. The receptor protein for PTS2 targeted proteins, Pex7p, is probably best characterized in yeast cells where it is proposed to cycle in and out of peroxisomes, similar to its Pex5p counterpart [7]. Pex7p relies on Pex5p for the import of PTS2-containing proteins, indicating that the two matrix protein pathways are coupled [8,9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call