Abstract

In this paper, we investigate the problem of n-jobs scheduling in an m-machine permutation flowshop with exact time lags between consecutive operations of each job. The exact time lag is defined as the time elapsed between every couple of successive operations of the same job which is equal to a prescribed value. The aim is to find a feasible schedule that minimises the total tardiness and earliness. We propose three mathematical formulations, which are then solved by running the commercial software CPLEX to provide an optimal solution for small size problems. As the problem is shown to be strongly NP-hard, we propose new improved upper and lower bounds useful for large size problems. We then evaluate their effectiveness through an extensive computational experiment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.