Abstract

Three basic paleosol morphologies, named Type A, Type B and Type C, are described from the middle–upper Permian strata of the Moradi Formation, Tim Mersoi Basin, northern Niger. The Moradi Formation is a typical alluvial redbed succession dominated by red mudrocks with fine to coarse-grained pebbly channel sandstones and matrix-breccias. Type A paleosols are hosted by well-sorted fine to medium grained trough cross bedded and massive sandstones and preserve abundant vertical to horizontal micritic and microspar calcite tubules, interpreted as rhizoliths. Lateral variability of rhizoliths in Type A paleosols, and their close association with fluvial channel-fill sediments suggests they are the roots of grove stands of phreatophytic vegetation that grew within unstable anabranching stream systems. Type B paleosols are hosted by mudrocks and preserve well-developed ped structure, abundant micritic calcite nodules and vertically-stacked micritic calcite nodular bodies, as well as rare calcite with satin-spar texture interpreted as a pseudomorphic replacement of pedogenic gypsum. The morphology of Type B paleosols suggests they were formed in well-drained floodplain deposits on stable landforms. Type C paleosols are similar to Type B but preserve pedogenic structures indicative of soil volume expansion and contraction, as well as more abundant Stage II pedogenic carbonate nodules. The morphology of Type C paleosols suggests that they developed periodically rather than seasonally in poorly-drained deposits that nevertheless occupied a relatively stable part of the landscape such as the plains flanking ephemeral lakes or sabkhas.X-ray diffraction analysis of the <2μm fraction from the Moradi Formation strata indicates that paleosol phyllosilicates are composed of illite, smectite, and occasionally kaolinite and talc. Illite is likely a detrital mineral, whereas smectite and kaolinite are likely pedogenic weathering products. The presence of talc in the Moradi Formation paleosols is unusual. It is limited to paleosol horizons that also preserve evidence for pedogenic gypsum accumulation and is therefore most likely related to a pedogenic weathering process. It is possible that this talc is a relatively low-temperature (~50–100°C) diagenetic alteration product of pedogenic Mg–phyllosilicates such as sepiolite.The range of morphologies, petrographic textures and mineralogy of the paleosol profiles indicates semi-arid to hyper-arid climatic setting. This paleoclimatic reconstruction is in agreement with Middle and Late Permian conceptual paleoclimate models and quantitative general circulation models. Nevertheless, and in spite of an arid climate, Moradi paleosols and their host strata also indicate a relatively shallow groundwater table. Importantly, this shallow groundwater resource undoubtedly helped to support the moderately diverse fossil vertebrate assemblage and large-stature macrophytes preserved in the Moradi Formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call