Abstract

The barrier to diffusion of organic solutes across the plant cuticle is composed of waxes consisting of very long-chain aliphatic (VLCA) and, to varying degrees, cyclic compounds like pentacyclic triterpenoids. The roles of both fractions in controlling cuticular penetration by organic solutes, e.g. the active ingredients (AI) of pesticides, are unknown to date. We studied the permeability of isolated leaf cuticular membranes from Garcinia xanthochymus and Prunus laurocerasus for lipophilic azoxystrobin and theobromine as model compounds for hydrophilic AIs. The wax of P. laurocerasus consists of VLCA (12%) and cyclic compounds (88%), whereas VLCAs make up 97% of the wax of G. xanthochymus. We show that treating isolated cuticles with methanol almost quantitatively releases the cyclic fraction while leaving the VLCA fraction essentially intact. All VLCAs were subsequently removed using chloroform. In both species, the permeance of the two model compounds did not change significantly after methanol treatment, whereas chloroform extraction had a large effect on organic solute permeability. The VLCA wax fraction makes up the permeability barrier for organic solutes, whereas cyclic compounds even in high amounts have a negligible role. This is of significance when optimizing the foliar uptake of pesticides. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.