Abstract

A number of lens fiber cell integral membrane proteins have been localized to junctional regions where they have been proposed to play a role in either mediating or controlling cell-to-cell communication. We have examined the effect of three lens fiber cell membrane proteins, MP20, MP26 and MP70, on the permeability properties of unilamellar phospholipid liposomes. This approach has been previously used to examine the channel-forming properties of MP26. Liposome permeability was determined by measuring the effect of Co2+ on the quenching of the fluorescence of N-4-nitrobenzo-2-oxa-1,3 diazole phosphatidyl ethanolamine (NBD-PE)-containing liposomes as described previously by Scaglione and Rintoul (Invest. Ophthalmol. Vis. Sci. 30:961-966, 1989). The effect of all three proteins on liposome permeability was similar. Permeability was dependent on the protein/phospholipid ratio and was not significantly affected by agents known to modify gap junctional permeability in vivo. Glycophorin A, a non-channel-forming integral membrane protein derived from erythrocytes, was also shown to increase the permeability of unilamellar phospholipid liposomes. The ability of a non-channel membrane protein to increase Co2+ quenching of NBD-PE-containing liposomes (presumably in a nonspecific manner) indicates that reports describing the permeability of lens membrane protein-containing liposomes should be interpreted with caution in terms of their relationship to cell-to-cell communication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call