Abstract

The peripheral benzodiazepine receptor (PBR) is an 18 kDa protein of the outer mitochondrial membrane that interacts with the voltage-dependent anion channel and may participate in formation of the permeability transition pore. The physiological role of PBR is reflected in the high-affinity binding of endogenous ligands that are metabolites of both cholesterol and heme. Certain porphyrin precursors of heme can be photosensitizers for photodynamic therapy (PDT), which depends on visible light activation of porphyrin-related macrocycles. Because the apparent binding affinity of a series of porphyrin analogs for PBR paralleled their ability to photoinactivate cells, PBR has been proposed as the molecular target for porphyrin-derived photocytotoxicity. The phthalocyanine (Pc) photosensitizer Pc 4 accumulates in mitochondria and structurally resembles porphyrins. Therefore, we tested the relevance of PBR binding on Pc 4-PDT. Binding affinity was measured by competition with 3H-PK11195, a high-affinity ligand of PBR, for binding to rat kidney mitochondria (RKM) or intact Chinese hamster ovary (CHO) cells. To assess the binding of the Pc directly, we synthesized 14C-labeled Pc 4 and found that whereas Pc 4 was a competitive inhibitor of 3H-PK11195 binding to the PBR, PK11195 did not inhibit the binding of 14C-Pc 4 to RKM. Further, 14C-Pc 4 binding to RKM showed no evidence of saturation up to 10 microM. Finally, when Pc 4-loaded CHO cells were exposed to activating red light, apoptosis was induced; Pc 4-PDT was less effective in causing apoptosis in a companion cell line overexpressing the antiapoptotic protein Bcl-2. For both cell lines, PK11195 inhibited PDT-induced apoptosis; however, the inhibition was transient and did not extend to overall cell death, as determined by clonogenic assay. The results demonstrate (1) the presence of low-affinity binding sites for Pc 4 on PBR; (2) the presence of multiple binding sites for Pc 4 in RKM and CHO cells other than those that influence PK11195 binding; and (3) the ability of high supersaturating levels of PK11195 to transiently inhibit apoptosis initiated by Pc 4-PDT, with less influence on overall cell killing. We conclude that the binding of Pc 4 to PBR is less relevant to the photocytotoxicity of Pc 4-PDT than are other mitochondrial events, such as photodamage to Bcl-2 and that the observed inhibition of Pc 4-PDT-induced apoptosis by PK11195 likely occurs through a mechanism independent of PBR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.