Abstract
ObjectivesThis study developed an analytical framework that aims at understanding the evolutionary processes of a micro-mobility system (for example, bike-sharing), which offers insights into the transforming nature of a city transport system.MethodsFirstly, the framework applied a Gaussian Mixture Model to examine the long-term fluctuations of travel demands. Secondly, it investigated the growth trajectories of service points via exponential and logistic growth models. Cumulative connections with other points represented the growth of a service location. An eigendecomposition approach was used to uncover the hidden structures behind the growth curves.ResultsThis framework was applied in the docked bike-sharing program in New York City, USA. The results show that there existed periodic patterns of travel demands in the long term. The majority of stations grew rapidly after they began to operate. However, the temporal signatures of stations’ growth displayed some variations across different locations.ConclusionThis proposed workflow can be employed in other cities with similar context to better investigate how micro-mobility systems evolve.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.