Abstract
Due to rising interest for the integration of chemical energy storage into the electrical power grid, the unsteady-state operation of chemical reactors is gaining more and more attention with emphasis on heterogeneously catalyzed reactions. The transient response of those reactions is influenced by effects on different length scales, ranging from the active surface via the individual porous catalyst particle up to the full-scale reactor. The challenge, however, is to characterize unsteady-state effects under realistic operation conditions and to assign them to distinct transport processes. Therefore, the periodic transient kinetics (PTK) method is introduced, which allows for the separation of kinetic process dynamics at different length scales experimentally under realistic operation conditions. The methodology also provides the capability for statistical analysis of the experimental results and therefore improved reliability of the derived conclusions. Therefore, the PTK method provides the experimental basis for model-based derivation of reaction kinetics valid under dynamic conditions. The applicability of the methodology is demonstrated for the methanation reaction chosen as an example process for heterogeneously catalyzed reactions relevant for chemical energy storage purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.