Abstract
A geometric algorithm is introduced for finding a symplectic basis of the first integral homology group of a compact Riemann surface, which is a $p$-cyclic covering of $\mathbf{C}P_1$ branched over 3 points. The algorithm yields a previously unknown symplectic basis of the hyperelliptic curve defined by the affine equation $w^2=z^{2g+1}-1$ for genus $g \ge 2$. We then explicitly obtain the period matrix of this curve, its entries being elements of the $(2g+1)$-st cyclotomic field. In the proof, the details of our algorithm play no significant role.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.