Abstract

For the storage of latent thermal energy (LTES), phase change materials (PCM) are the most commonly used. Nonetheless, their low thermal conductivity values and the liquid leakage on the transition phase of process limits their application. Hence, the stabilization-form can be a solution to surmount these two limitations. In this work, the Hexadecane with large latent heat was used as PCM, styrene-b-(ethylene-co-butylene)-b-styrene (SEBS) tri-block copolymer and the low-density polyethylene (LDPE) served as the supporting materials and expanded graphite (EG) was added for improving the thermal conductivity. We focused on the preparation of SEBS/Hexadecane/LDPE Composites and the improvement of the heat transfer using the EG. The Fourier Transformation Infrared spectroscope also demonstrated a good compatibility between SEBS, LDPE, Hexadecane, and EG. The transient Guarded Hot Plate Technique (TGHPT) and a Thermogravimetric analyzer were utilized to assess the thermal properties and thermal stability of the PCM composites respectively. Further, a leakage test proved that the composite has an excellent form-stable property. Thanks to expanded graphite, no hexadecane leakage was depicted at a 75% mass fraction of PCM in composites, which surmounts almost all mass fraction values reported in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.