Abstract
This paper investigates the properties of the performance surface for the problem of nonlinear mean-square estimation of a random sequence. The problem studied has direct application to the study of active noise control (ANC) systems when the transducers are driven into a nonlinear behavior. A deterministic expression is derived for the mean-square error (MSE) surface as a function of the system's degree of nonlinearity for Gaussian correlated input signals. It is shown how the presence of the nonlinearity deforms the MSE surface. It is demonstrated that the surface is unimodal, and the expression for the optimum weight vector is determined. The new results are then used to quantify the behavior of ANC systems employing the LMS adaptive algorithm. Important algorithm properties are derived from this study. Examples are presented which verify the analytical models derived.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Sba: Controle & Automação Sociedade Brasileira de Automatica
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.